

The shortest way to go from A to B is a straight line

Cable Car

Mono Cable

CABLE PROPELLED TRANSIT

Aerial

Δerial ⁻

Aerial Tramway

Funicular

Cable/Liner People Mover

Lisbon - Portugal

La Paz – Mi Teleferico

Key figures:

- Longest urban Cable Car network worldwide
- 27 Km and 8 Lines in operation (construction started 2013)
- Additional 3.7 Km to be build by 2019
- Capacity of the new Purple Line: 4,000 pphpd

Medellin - Metrocable

Key figures:

- By 2019 6 Lines in operation over 14.7
 Km
- From 2004 241 million passengers
- Capacity of the new P Line: 4,000 pphpd

Mexico City - Mexicable

Bogotá – TransMiCable

Key figures:

- Km 4.9 with 7 stations
- Capacity 3,000 pphpd
- 20,000 Average daily pax

Key figures:

- Km 3.3 with 3 stations
- Capacity 3,600 pphpd

Koblenz

Key figures:

- In operation since 2010
- Capacity 3,800 pphpd
- Investment ca. 13Milion€
- 10 months construction period

Villanova da Gaia

Key figures:

- In operation since 2011
- Capacity ca. 950 pphpd
- Investment ca. 10Million€
- 2 years construction period

Lisbon

Key figures:

- In operation since Expo 1998
- Capacity 2,000 pphpd

We can certainly Fly High

Could we see Cable Car become a credible form of urban mass transit around the world in the future?

Paris

4.4 Km with 5 stations in Val-de-Marne, crossing TGV lines, rail freight depot and national roads

Marseille

Ca. 1 Km connecting the Old Port of Marseille and the Notre-Dame de la Garde basilica

Amsterdam

Ca. 1.5Km (+800m expansion) to cross the Amsterdam's waterfront

We can certainly Fly High

Address the Real Problem

- A commuter line should not be pretending to be a touristic attraction
- A touristic attraction link doesn't have to replicate or be in competition with existing transit

Address the Real Problem

Requirements **Needs Fares**

Urban Mass Transit

- Support economic **disadvantaged areas** or populations
- Reduce congestion and reduce travel
 time
- Improve transport environmental sustainability
- Reliability / Capacity
- Higher Frequency in peak hours 18/20h service for 365 days
- **Integration** with other PT networks and the rest of the transport network (train stations, parking areas, etc.)
- Systematic Trips: Low fares -equivalent to PT network - Fares integration

Touristic Attraction / Access to a touristic attraction

- Sightseeing
- Something unique

- Comfort / Design
- Higher frequency during the **holiday** period
- Limited operating period

Non-systematic trip: High fares – higher willingness to pay

Physical constraints

Low Capex / Opex

Low Emissions

Cost

Around 2/3 less to build than a traditional BRT system. No bridges or tunnels are necessary, fewer land costs, lower O&M costs

Implementation time

A well-design system can be up and running withing 2 years from funding.

Social inclusion

The Cable car has capability to utilize areas once thought to be unserviceable

Last Mile

It solves the Last Mile problem

Up in the Air

Making use of space that is free from delays caused by congestion and which would otherwise be vacant and of no benefit to commuters

Crosses the obstacles

Not only hills, rivers, industrial parks..Can city traffic could be considered the ultimate urban topographical obstacle

